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Abstract.

Success of the Paris Agreement relies on rapid reductions in fossil fuel CO, (ffCO2) emissions. Atmospheric data can
verify the ffCO5 reductions pledged by nations in their nationally determined contributions. However, estimating ffCO2 from
atmospheric COs is challenging due to natural fluxes and varying backgrounds. One approach is to combine with nitrogen
oxides (NO, = NO + NO,), which are co-emitted with CO- during combustion. A key challenge in using NO, to estimate
ffCO; is the computational cost of modelling atmospheric photochemistry. Additionally, the NO2:NO column ratio must be
well understood to convert model NOy columns to NOs columns for comparison with satellite data. We use random forest
regression to parameterise NO chemistry, relying only on meteorological parameters and NOy concentration. The regression
is trained on outputs from a nested GEOS (Goddard Earth Observing System)-Chem model simulation for mainland Europe
in 2019. We develop a monthly NOy chemistry parameterisation that performs well when tested on perturbed emission runs
(R? > 0.95) and on unseen meteorology for 2021 (R? > 0.79). We also parameterise the NO2:NO ratio (R? > 0.99 on perturbed
outputs, R? > 0.92 on unseen meteorology). Additionally, we present an alternative method to predict NO, rates by scaling
baseline NO, rates with changes in NO, concentration (R? = 1.0 on perturbed outputs). Our models reproduce NO; columns
with minimal deviation from full-chemistry models, with reconstruction error smaller than the TROPOspheric Monitoring
Instrument (TROPOMI) precision in over 99.9% of cases, supporting robust ffCO inversion efforts. These results provide a
robust framework for accurately estimating fossil fuel CO2 emissions from atmospheric data, enabling more reliable monitoring

and verification of global emissions reductions.

1 Introduction

Reaching net zero is a global goal, needed to curb further warming of our planet. Achieving that goal on a national scale
requires accurate knowledge about fossil fuel emissions of CO2 (ffCO2) to verify a country’s progress towards achieving their
Nationally Determined Contributions under the Paris Agreement. But how does a country know they are headed in the right

direction? The default approach is to use national inventories that are compiled from energy statistics and emission factors
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but they are uncertainty for various reasons, mainly associated with the veracity of the statistics and their spatial and temporal
distributions and the default assumption of time-invariant emission factors. Such ‘bottom-up’ inventories are typically available
with a delay of least a year thereby introducing a temporal disconnect between climate action and results. The alternative ‘top-
down’, data-driven approach uses Bayes’ theory to infer CO, emission estimates from observed changes in atmospheric COs.
This approach is also subject to uncertainties. One of the remaining challenges associated with this atmospheric approach
is isolating the combustion and natural contributions to atmospheric CO- (Oda et al., 2023). Various approaches have been
proffered to address that challenge, which fall into two broad categories: spatial disaggregation of combustion (Shu and Lam,
2011; Liu et al., 2018) and natural fluxes and using an additional trace gas (Meijer et al., 1996; Lopez et al., 2013; Wenger
et al., 2019; Super et al., 2020), associated exclusively with combustion or natural processes common to COs. Due to the large
computational overhead of directly modelling the atmospheric NOy photochemistry, we endeavor to determine an alternative
methodlogy to model NO, chemistry. Here we describe a parameterisation of tropospheric nitrogen oxide (NOx = NO +
NO;) chemistry that effectively unlocks our ability to use NO, alongside CO- to quantify ffCO estimates within an Bayesian
inference framework, particularly in the context of an operational system.

Extracting energy from carbon-based fuels relies on breaking apart atomic bonds that form the molecular structure of the
fuel, thereby releasing energy. This is achieved by combustion in which the fuel, composed primarily of hydrogen-carbon
bonds, is oxidized by molecular oxygen (O3). Generally, more energy is released during combustion for fuels with a higher
H:C ratio. The primary combustion products are CO5 and water vapour, but as the combustion becomes more inefficient (e.g.
insufficient Os to react completely with the fuel) a wider range of compounds are released, determined by the composition
of the fuel being burned. For many combustion processes, air is used to provide Oz. While molecular nitrogen (N2) in air
does not take part in the combustion reaction, the high temperatures involved can thermally dissociate Ny to facilitate the
production of NO (and to a lesser extent NO5). The advantage of using atmospheric NOy as a tracer of ffCOs is its relatively
short lifetime, on the order of hours to days, which means that we can link elevated NOy satellite columns directly to their
parent emissions. Numerous studies are using observations of NO, and NO- to constrain estimates of ffCO5 (Berezin et al.,
2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020). With the increasing availability of in situ and satellite
measurements of atmospheric CO2, NO, and other fossil-fuel tracers, deriving ffCO5 through model inversion techniques is
becoming a widely used approach (Feng et al., 2009; Nayagam et al., 2023; Super et al., 2024).

We present a methodology for parameterising NO, chemistry to reduce the associated computational overhead. We consider
NOy because its constituents, NO and NO,, rapidly interconvert (Jacob, 1999). By modelling NOy as a proxy for the combined
NO and NO; we can save a considerable amount of computational time that would otherwise be spent on photochemical
calculations (previously shown in Wu et al. (2023)). To do this we need a model that can predict the net loss of NOy at each
time step and grid point. The rate of decay of NOy is driven by a number of meteorological parameters (Nguyen et al., 2022)
including, but not limited to, the irradiance from sunlight, air temperature and solar zenith angle. In this study, we develop
a machine learning-based random forest regression model, trained on a full-chemistry version of the GEOS (Goddard Earth
Observing System)-Chem atmospheric chemistry model, to accurately predict the atmospheric NO, rate of change using a

small set of driving variables. We evaluate the robustness of our parameterised NOy chemistry using perturbed emissions on
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the order of those we typically employ in ensemble Kalman filter techniques. With atmospheric inversion methods in mind,
atmospheric NO, emission estimates tend to be constrained by satellite column observations of NO5 (Napelenok et al., 2008;
Zhao and Wang, 2009; Kemball-Cook et al., 2015) so our parameterised model must also be able to describe changes in NOs.
We achieve this by developing a further random forest-based model, which can predict the species concentration NO3:NO
ratio. Figure 1 shows a schematic that provides an overview of the different steps we use to parameterise NOy chemistry
and NO3:NO columns and relate them to NO» so that can be compared with satellite observations. Individual steps will be
introduced in section 2.

In the next section, we describe the GEOS-Chem atmospheric chemistry transport model that we use to train our random
forest models, the satellite observations of column NO, that we use to evaluate our parameterised atmospheric chemistry model
for NOo, and the approach we take to construct the random forest model. In section 3, we report the performance of random
forest models of atmospheric NO, and NO2:NO, and evaluate the corresponding atmospheric NO2 columns using satellite

data. We conclude the paper in section 4.

2 Data and methods

Here, we describe the GEOS-Chem atmospheric transport model used to build our random forest regression models, the
satellite column data we use to evaluate our parameterised model of atmospheric NO chemistry, and details that describe
how we develop our random forest regression models. A random forest regression model, or a scaling based approach can be

used to predict the chemistry rates. The modelled NOy concentrations are then converted to NOy using an additional random

Rapdom fqrest regression deeI Updated chemistry rate is calculated by
which predicts the NO, chemistry [ GEOS-Chem ] scaling the baseline rate proportionally

rate using  meteorological inputs = to the change in NO, concentration
Regression ][ Constant ]

Parametrise NO, ‘ based lifetime - Predict chemistrV
chemistry chemistry by scaling
Perturbations

scaling
Random forest regression model OUtPUt
which  predicts the NO:NO, applied to ffNO,
ratio using meteorological inputs
Data
assimilation
Observed
NO, columns | Compare satellite NO,
e.g. TROPOMI

Figure 1. A schematic illustrates how NOy chemistry parameterisation models are integrated into GEOS-Chem for modelling of atmospheric

Parametrise Convert NO, to NO,
NO,:NO columns

NOx without a full chemistry scheme.
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forest model. This efficient approach significantly reduces GEOS-Chem’s computational cost for forward modelling of NO2
columns. This is particularly useful for data assimilation, allowing anthropogenic NO, emission perturbations to be compared

with satellite NO4 observations, such as the TROPOspheric Monitoring Instrument (TROPOMI).
2.1 GEOS-Chem atmospheric chemistry transport model

We use version 14.2.2 of the GEOS-Chem atmospheric chemistry transport model to describe the emissions, transport, and
chemical production/loss of atmospheric NOy. For the purpose of our study, we use a nested version of the full chemistry
model, centred over mainland Europe (32.75 to 61.25° N, -15 to 40 ° E) with 47 vertical levels, approximately 30 of which fall
below the dynamic tropopause. The nested model runs with a horizontal spatial resolution of 0.25°x0.3125°. Initial conditions
and lateral boundary conditions to the nested domain were created from a consistent global version of the GEOS-Chem model
run at 4°x5°, with three-hourly output fields. We ran the model with a transport timestep of 5 minutes and a chemistry timestep
of 10 minutes.

The model is driven by offline meteorology fields from the GEOS Forward Processing (GEOS-FP) product from the Global
modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. GEOS-FP has a native horizontal reso-
lution of 0.25°x0.3125° with 72 vertical pressure levels and 3 hr temporal resolution. To describe the emissions of NO, we
used anthropogenic emissions from the Community Emissions Data System (CEDS) version 2 (Hoesly et al., 2018), which
provides NO emissions for anthropogenic combustion (industry, energy extraction), and non-combustion sources (agriculture,
solvents), including surface transport and shipping. Aircraft emissions for NO and NOs are taken from the Aviation Emissions
Inventory Code (AEIC) (Simone et al., 2013). Pyrogenic emissions of NO are taken from the Global Fire Emissions Database
(GFED) version 4.1 (Randerson et al., 2017). In addition, the NOy emissions from soil and lightning are parameterised within
GEOS-Chem (Vinken et al., 2014; Gressent et al., 2016).

GEOS-Chem’s full-chemistry mechanism simulates atmospheric chemistry by explicitly solving a comprehensive network
of chemical reactions, capturing the production, transformation, and loss of NO and related species. NOy chemical loss is
simulated through key reactions such as NOs reacting with ozone (O3) to form NOs;, hydroxyl radicals (OH) to produce
nitric acid (HNO3), and hydroperoxyl radicals (HO2) to form peroxynitric acid (HNOy). Organic nitrate formation is included
through the reactions of NO5 with methyl peroxy radicals (MO3) and methacryloyl peroxy radicals (MCOs), forming methyl
peroxy nitrate (MPN) and peroxyacetyl nitrate (PAN), respectively. Additional loss occurs via NOgs reacting with NOy to
produce dinitrogen pentoxide (N2Oj). Simultaneously, the model accounts for important regeneration pathways, including
the thermal decomposition of N2Oj5 into NO3 and NO,, the breakdown of PAN to release NOy and methacryloyl peroxy
radicals (MCOs3), and the photolysis of HNOy4 to produce NO- and HO-. Rapid NO to NO, exchange is simulated through key
reactions, including NO + O3 — NOg + O, which relies on ozone to oxidize NO, and NO + NO3 — 2 NO,, which occurs
through the reaction of nitric oxide with nitrate radicals. Additionally, photochemical reactions driven by sunlight include NO2
+ O — NO + Og, where nitrogen dioxide photodissociates to form nitric oxide. The mechanism determines reaction rates

using reaction rate coefficients that depend on temperature, pressure, and solar radiation, alongside environmental inputs like
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meteorological fields and species concentrations. The average diurnal cycle of NOy chemical rate of change calculated from
full-chemistry simulations is presented in Fig. A1 (Appendix A) for the four seasons of the year.

The NO, concentration, the NO, chemical rates of change, and relevant meteorology were output at a temporal resolution
of one hour. The chosen meteorological parameters are shown in Table 1. These were selected as they were all found to have a
relationship with the net NO, chemical rate of change.

The model was run for the full year 2019 with baseline (unperturbed) NO, anthropogenic emissions taken from the CEDs
emission inventory. This data was used to train the regression models. To further validate the regression model’s performance
under varying emissions, additional model runs were conducted with random perturbations applied to anthropogenic NO
emissions on the order of +20%. We chose this size of perturbation because a 20% increase in emissions induces changes in
NO- columns on the same order of magnitude as the difference observed between GEOS-Chem and TROPOMI (as in Fig. 2a).
These perturbed runs were performed for 10 days in January, April, July, and October. A model run for the year 2021 was also

performed in order to test the regression performance for an unseen meterological period.
2.2 Random Forest regression modelling

We trained two random forest regressor models to predict the NO, net chemical rate of change, and the NO5:NO ratio. These
models were built using the Sci-kit learn python package (Pedregosa et al., 2011). We performed hyperparameter tuning
to minimise the computational time of model prediction while maintaining adequate prediction performance (see Fig. A2,
Appendix A).

We separately trained both regression models for each month of the year 2019. The models were developed using the NOy
concentration, the spatial location and meteorological variables as input parameters. We then applied a forward selection feature
extraction procedure, using mean absolute errors, to further optimise model performance. Based on this procedure, we selected
a set of nine features (table 1) for both prediction models. The individual relationship between each of the nine features and

the NO chemistry rate of change are shown in Fig. A3 (Appendix A). We also considered other parameters, including air

Parameter Description Units

NOx Species concentration molec cm—3
SZA Solar zenith angle at grid point degrees
Longitude Grid point coordinate degrees-East
Latitude Grid point coordinate degrees-North
Altitude Height above ground level m

Radiation Incident short wave radiation W m—2
Temperature | Atmospheric temperature K

Humidity Water vapour mixing ratio vol vol 1
Wind speed Wind speed magnitude ms—1!

Table 1. Input parameters used in regression analysis to predict the NO, chemical net rate of change [molec cm ™2 s~1] and NO5:NO ratio.
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Figure 2. a) Sensitivity testing shows that the impact of 20% emission perturbations on modelled NO2 columns is on the same order as the
deviations between GEOS-Chem and TROPOMI. (b) The impact of emission perturbations on the NOy chemistry rate becomes small above

3km from the ground, and when the change in NOy concentration < 5E4 molecules/cm®

pressure, air density, the planetary boundary layer height, and the relative mixing ratio of ozone and carbon monoxide (CO),
but these were excluded during feature selection.

We trained and tested our NO, chemistry regression models on model grid points in the first 3 km above the surface —
the region where changes to surface emissions were found to directly influence the atmospheric chemistry, see Fig. 2b. The
regression model for the NO5:NO ratio was predicted for each level in the troposphere, and trained on the subset of model
data that coincides with the TROPOMI swath (11:30 - 15:30 LST overpass). The NO2:NO ratio can be used to convert the
concentration of NO, to NOs:

NOQINO

NOQ:NOX1+NO2:NO'

ey

We test both models on unseen data from model runs that include £20% emission perturbations similar to those used in an
ensemble Kalman filter (Feng et al., 2009, 2023), as well as from an unseen year, 2021. To assess the performance of the
regression models, we used the coefficient of determination, R2, the mean absolute error (MAE), and the mean bias. These are
defined by the following equations, where y; are true values, ¢; are predicted values, ¢ is the mean of the true values, and N is

the number of datapoints:

2 Ziv:l (yi—ﬁi)z 1 & . . 1 .

RE=1-Z=Z5F"—""735 — 3 MAE:NZ|yi—yi| MeanBlas:NZ(yi—yi) (2)
Z¢:1 (yz - y) i=1 i=1

2.3 NOy chemical lifetime

In an alternative formulation, we apply the assumption that the lifetime of atmospheric NOy remains constant under stable

meteorological conditions. Hence, if a full chemistry model run is available for a baseline emission scenario, the chemistry rates
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for perturbed scenarios can be calculated by scaling the original rate according to the proportional change in NO concentration.
This approach serves as an alternative to using regression models for predicting the chemistry rates.
The atmospheric lifetime, 7 of NOy is given by:

_ NO,
Ryo,’

T

3)

where NO, denotes the combined NO and NO, species concentrations [molec cm~3] and Ryo, is the chemical rate of
change [molec cm~3s~!] that describes the net loss, which accounts for the balance between its chemical production (e.g.,
from reactions involving NO or NO- precursors) and its chemical loss processes (e.g., reactions forming reservoirs like HNO3
or NOy species). Note that when NO, experiences net chemical production, the atmospheric lifetime becomes negative. The
benefit of looking at chemical lifetime, rather than the net rate of change, is that the quantity is largely independent of species
concentration. This independence allows for a more stable understanding of the NO chemistry, irrespective of fluctuations in
its concentration caused by emission changes.

We found that while the influence of +20% emission perturbations cause clear changes to the NO, chemical net rate of
change, the resulting changes to atmospheric lifetime are considerably smaller (see Fig. A4, Appendox A). This result suggests
that the chemical lifetime is driven by the meteorology and location in the model but is less sensitive to changing concentrations
of NOy. The unperturbed model run provides NOy concentrations and rates of change at a 1-hour temporal resolution, allowing
the chemical rate of change to be updated every hour under the assumption of an unchanged chemical lifetime. The new rate
of change can be determined using the NOy lifetime, 7, and the local NOy concentration:
NO«(z,y, z,t)

(.9 .0) @

RNOx(x7y7zvt) =

For this method, an initial unperturbed full-chemistry model run must be employed to determine the NOy chemical lifetime
7(z,y,z2,t) for each grid-point and time-point for the spatial and temporal region of interest. Then for any further perturbed
model runs, the chemistry rates can be determined without the need of an integrated chemistry scheme, thereby saving consid-
erable computational time. The updated chemistry rates are then simply scaled by the ratio of the new NO concentration to

the original NO, concentration; so, if the concentration doubles then we assume a doubling in the net chemical rate of change.
2.4 Regression-based atmospheric chemistry transport modelling

For this study, we added the NO, species to the GEOS-Chem tagged carbon model, CO5, CO, methane, and carbonyl sulphide,
in which individual tagged tracers track contributions of these trace gases from geographical regions and/or natural and human-
driven fluxes. This model does not include an integrated chemistry scheme and therefore the NOy species chemical rate of
change is determined using the NO chemistry regression model. Going forward, we refer to this model as the regression-
based atmospheric chemistry transport model (shown in Fig. 1).

We performed a full-chemistry model run with emission perturbations to evaluate the impact of emission changes on NOy
chemistry, and later to assess the performance of our regression model in predicting the effects of emission changes. An

analysis of how the emission-driven changes in chemistry rate varied with the atmospheric altitude as well as the change in
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NOy concentration is shown in Fig. 2b. The net rate of change in NOy chemistry showed minimal variability at altitudes
below 3 km, where the chemistry change was less than 9 x 10% molec/cm3/s. Additionally, minimal variability in atmospheric
chemistry was observed when the absolute change in NO, concentration was less than 5x 10* molec/cm?®, which corresponds
to a chemistry change of less than 2x 10% molec/cm3/s. Based on these findings, we set a condition to update the NO, net
chemical rate of change using the unperturbed full-chemistry outputs for altitudes above 3 km and for regions where the
change in NO, concentration is less than 5x10* molec/cm?. For all other regions, the chemistry regression model is used to
predict the new rate of change.

We also used the constant lifetime scaling method (see above) to predict the new rate of change. Looking to Fig. 1 we can
see that this methodology provides an alternative approach to the regression-based atmospheric chemistry model for modelling
NOy columns. Throughout this paper we will compare the results of the regression-based chemistry scheme and the constant
lifetime scaling based approach.

We ran the model for 10 days in January, April, July, and October which provided contrasting seasonal conditions to test the
model. For each run, we use the +20% perturbed anthropogenic NOy emission sets. To evaluate the veracity of the NOy column
model outputs for the regression-based chemistry model and for the constant lifetime scaling model, we compare them with
the full-chemistry model outputs. We use our NO2:NO ratio regression model to convert NOy results from our atmospheric
chemistry regression model to NOy columns, sampled at the time and location of TROPOMI data, so they can be compared

with TROPOMI NO, column data.
2.5 TROPOMI satellite column observations of NO5

We use TROPOMI NOs, tropospheric columns (S5P Level 2, product version 2.2.0, processing version 1.6.0.) to compare with
the GEOSChem model output (see Fig. 1). TROPOMI was launched in 2017 in a Sun-synchronous orbit with a local equatorial
overpass time of 13:30. It has a swath width of 2600 km and a ground pixel of 7x7 km? in the nadir. Due to the width of the
swath, the 13:30 overpass time corresponds to data captured with local solar time (LST) ranging from 11:30 and 15:30 in the
highest latitude regions of the European domain. We only used data with a quality flag > 0.75, filtering out data affected by
elevated cloud cover, aerosol loading, and larger solar and viewing zenith angles. We analysed TROPOMI data for 10 days in
January, April, July, and October 2019.

For our study, we regridded TROPOMI data to our 0.25°x0.3125° GEOS-Chem model grid. To enable a comparison be-
tween TROPOMI and GEOS-Chem, we sampled the model at the location and time of each TROPOMI observation. We
applied scene-dependent TROPOMI averaging kernels, describing the instrument sensitivity to changes in atmospheric NO,

to the corresponding model NOs, profiles.

3 Results and discussion

Here, we report the model performance of our atmospheric chemistry prediction models for NOy and the accompanying

regression model for the NO»:NO ratio that enables us to convert NO, columns to NO5y columns observed by satellites. We
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assess the fidelity of our results from these models using the full-chemistry version of GEOS-Chem and evaluate our results

using TROPOMI NO, column data.
3.1 Performance of atmospheric chemistry regression models for NO,
3.1.1 NOy chemistry random forest

Fig. 3a shows that the NO, chemistry random forest model has an impressive performance at reproducing results from the full-
chemistry version of GEOS-Chem for the four months we study in 2019. The model performance R? values are 0.97, 0.97, 0.96
and, 0.95 for January, April, July, and October 2019, respectively. The MAE values are largest in July (4x 10* molec/cm?®/s)
and smallest in January (2.3 x 10* molec/cm?®/s), reflecting the increase in magnitude of chemistry rates during summer months
over Europe.

We also tested our regression-based atmospheric chemistry model with model data from 2021 (Fig. AS, Appendix A). As
expected, the regression model performance has less skill in reproducing data that has not been used for training. In this
case, the MAE values are higher by a factor of 1.3-1.8 compared with the overall performance comparison shown in Fig.
4). Nevertheless, the model still shows substantial skill despite substantial differences in anthropogenic emissions between
2019 and 2021 due to COVID-19. Specifically, NOy emissions were found to decrease by 18-24% during lockdown periods
(Miyazaki et al., 2021) leading to a mean observed reduction in NOy of 29% (Cooper et al., 2022).

3.1.2 NOy chemistry prediction using constant lifetime scaling

Fig. 3b shows results from using our alternative atmospheric chemistry regression NO, model that employs a constant at-
mospheric lifetime scaling approach (eq. 4). The resulting model performance is a significant improvement above the other
regression model for all four study months. Using our scaling approach, we found consistent values of R? = 1.0 and MAE
values that are approximately 2-3 times smaller than the other regression model. As with the other regression model, the size
of the error is scaled by the seasonal changes in chemistry rates.

While this approach shows extremely encouraging abilities to determine NOy chemistry rates, its effectiveness relies on
having a full-chemistry model run available for at least one set of emission inputs. Consequently, this approach is particularly
useful for emission perturbation studies, for which numerous emission distribution scenarios might be needed for model inver-
sion work. In this case, the full-chemistry model would only need to be run once for the given time period of interest. However,

we cannot predict the NOy chemistry using this method for a previously unmodelled meterological period.
3.1.3 NO-2:NO ratio regression model

We find the random forest regression model to predict NO5:NO ratios also demonstrates significant performance. The predicted
ratio is used to convert NOy concentrations to NOy concentrations (eq. 1). Figure 3c shows that the regression model can
reproduce “true” NOy values from the full-chemistry of the GEOS-Chem model, with values of R? of 1.0; the exception is

January when R? = 0.99.
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Figure 3. Actual versus predicted scatter plots for (a) the random forest regression model for predicting the NOy chemistry rate, (b) the
constant lifetime scaling for reconstructing the NOy chemistry rate using an unperturbed chemistry dataset, (c) the reconstruction of NO2

from NOy using the random forest regression model for predicting the NO2:NO ratio.
Generally, the model performance is better during summer months and worse in winter months, with MAE values an order

245 of magnitude smaller in July compared to January. This is partly due to NO, concentrations increasing during colder months

due to increased combustion and longer nights, and because we find that NO2:NO ratios become increasingly hard to determine

10



250

255

https://doi.org/10.5194/egusphere-2024-3949
Preprint. Discussion started: 13 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

at higher solar zenith angles, typically experienced over Europe during daytime through winter months. We also examine the
performance of this regression model using data from the unseen year 2021. As with the atmospheric chemistry regression
model, described above, the performance was good but worse than for 2019 in which data was used to train the model. The
MAE increased by a factor of 3.25, 3.52, 3.04, and 3.14 for January, April, July, and October respectively. We found the R?
performance reduced most for January from 0.99 to 0.92, During April and October R? reduced from 1.0 to 0.99, while R?=1.0

was maintained in July.
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(b)
Figure 4. Regression model prediction performance compared when tested on a 20% perturbed model run for 2019 and an unseen year,
2021. (a) Shows the NOx chemistry regression model performance comparisons and (b) shows the NO2 prediction performance using the

NO2:NO regression model.

3.2 NOy atmospheric modelling

Fig. 5 shows the NO, column reconstruction for the two regression models used to describe the NO, chemistry rates from
the full-chemistry version of the GEOS-Chem model. From a visual inspection, there are no obvious differences in the spatial
distribution of the NO, columns reconstructed using both the regression-based chemistry model and the constant lifetime

scaling model. However, when mapping the differences, there are areas of deviation from the full-chemistry model. Broadly,
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this deviation is significantly smaller when we use the scaling-based model compared to the regression-based. In addition, the

error accumulation in January is notably smaller than in other months.

GEOSChem: GEOSChem: Regression- Column GEOSChem: GEOSChem: Constant Column
Full chemistry based chemistry difference Full chemistry lifetime scaling difference

10%° 10% -5 0 5 10%° 10 -5 0 5
2 leld 5 lel4
Column [molec/cm?] Difference [molec/cm?] Column [molec/cm?] Difference [molec/cm?]
(@ (b)

Figure 5. The modelled NOx columns sampled at 12:00 UTC after a 10-day model run with £20% emission perturbations. NOx columns
are compared for the GEOS-Chem full-chemistry model and (a) NOx columns are simulated using the regression-based chemistry method

and (b) using the constant lifetime scaling method.

Fig. 6 shows the temporal variation in the reconstruction error. The range, IQR, and median values are shown in 6a and the
mean absolute percentage error (MAPE) is shown in 6b. For the regression-based chemistry method the range in deviation
peaks at up to 3x10'* molec/cm? in January, 5x10'# molec/cm? in April and 6x10'* molec/cm? in July and October. This
is reflected in maximum MAPE values of 2.8%, 9.7%, 8.9%, and 9.3% for the four months, respectively. On the whole, the
MAPE reduces through time, with final deviation values of 1.7%, 3.4%, 2.0%, and 4.8% after the full 10-day run.

Reconstruction errors for the constant lifetime scaling model show much smaller errors, particularly in January, with MAPE
< 0.2% throughout the 10-day run. This is driven by the smaller impact that emission perturbations have on the NO, chemistry
in January as shown by Fig. A4. In particular, the lifetime of NOy is relatively unchanged between the unperturbed and
perturbed model runs. This reduced impact in January is likely due to the slower rate of photochemical reactions in the winter
months and increased atmospheric stability at lower temperatures. The other months do see a more prominent deviation of
up to a maximum of 4x 10'* molec/cm?2, with peak MAPE values of 6.6%, 5.7%, and 4.5%, for April, July, and October,
respectively. As with the regression-based model outputs, here the MAPE also generally decreases through time with final

deviation values of 0.1%, 1.1%, 0.2%, and 0.3% for each month, respectively. Interestingly, while the range and IQR are
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relatively stable throughout the run when using the regression-based reconstruction, these quantities decrease considerably
with time when we use the scaling-based reconstruction.

The reconstruction error has a small diurnal cycle, peaking in the morning and to a lesser extent in the evening, reflecting
the diurnal cycle of NO, chemistry (Fig Al). Overall the absolute model error for both the regression-based and scaling-based
methods peaks after the first day and then gradually reduce, plateauing by ~day 6. This early peak in error followed by a
reduction and eventual plateau is likely due to compensating errors, where the regression model’s over- and under-predictions
balance each other out over time, leading to a stabilisation of the overall error. It is encouraging that there is no accumulation
of error through time, suggesting this approach would be suitable for studies longer than for ten days. It is clear that the optimal
reconstruction performance is found when using the scaling-based method, but as we already note there are limitations to this
method. The regression-based approach still provides excellent reconstruction performance for our purposes.

To evaluate the performance of the regression-based chemistry modelling approach with regression models trained on a
different meteorological time period, the same models were applied to simulate atmospheric NOy over Europe for 2021.
Figure 7a shows the reconstructed NOy columns after a 10 day model run. As expected, the reconstruction performance is
clearly worse than when the regression-based chemistry is just applied in 2019 with emission perturbations (Fig 5a). However,
from a visual inspection, there are no obvious changes to the spatial distribution of the NOy columns reconstructed using
regression-based chemistry in comparison to the full-chemistry model output. Additionally, the temporal variation in error is
shown through plots of the MAPE (Fig 7b). We see maximum MAPE values of 11.0%, 10.0%, 16.7%, and for January, April,
July, and October 2021 respectively. For all months this is an increase in the maximum deviation observed when applying
this methodology to a perturbed 2019 run. Overall, this is reflective of the reduction in prediction power of the regression
models when we apply to 2021, which has unseen meteorology. Overall, the same pattern of the absolute error gradually
reducing and plateauing by ~ day 6 is also observed here. However, the diurnal cycle of variation in the reconstruction error
is more pronounced in the 2021 case, likely due to the fact that the regression model is worse performing during the night for
unseen meteorology. The error tends to reduce dramatically towards the middle of the day, which is helpful if we consider the
application of model comparison with satellite data such as a TROPOMI, which has a 13.30 overpass time.

Substantial computational time is saved when we employ these regression methods to model atmospheric NOy. Figure 6¢
shows the time taken for each model to perform a 1-day model run. This was calculated as the mean average for the model to
run for a single day out of the 10 days run for each of the four months, repeated for 3 model runs. Clearly, the full-chemistry
model takes the longest, with a mean of 52 minutes per day for our nested model over Europe. The regression-based chemistry
model is significantly faster with a mean of 16 minutes (3.25 times improvement), while the constant lifetime scaling method
is even faster, with a mean of 12 minutes (4.3 times improvement). It is important to note that the model run times reported

here are subject to variability due to fluctuations in the relative loading experienced by the computer system used.
3.3 NO- column reconstruction

Finally, we assess the capability of our NO5:NO regression model, convolved with TROPOMI instrument averaging kernels,

to reproduce observation column distributions of NOgy from TROPOMI. The absolute differences in NO, columns between
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Figure 6. Comparison of the temporal variation in NOx column reconstruction for the regression-based and scaling-based model. (a) The
median (dashed line), IQR (light-shaded region) and range (dark-shaded region) of the NO column reconstruction error over the 10-day runs.
(b) The mean absolute percentage error over the 10-day runs. (c) Shows the reduction in computational time when modelling atmospheric

NOx using each of our chemistry prediction methods compared to running with the full-chemistry model.

GEOS-Chem full-chemistry and the GEOS-Chem regression-based and scaling-based models are compared to the absolute
difference in TROPOMI NO5 and GEOS-Chem full-chemistry, as well as to the magnitude of the TROPOMI NOy column
precision data. This is presented in Fig. 8a, compared for 8 days in January, April, July, and October. We apply the regression-
based method to a 2019 perturbed model run, and to a 2021 model run.

We find comparable NO, reconstruction errors for the four months we study. Earlier, with the NO, reconstruction, we found
that the error was smaller for January than the other months (Fig. 3a and 3b), however, the higher error from the January
NO3:NO regression model (Fig. 3c) offsets this advantage, ultimately bringing the overall reconstruction error for all months

to a comparable level. We observe comparable magnitudes of reconstruction error when we compare our NO, reconstructions
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Figure 7. (a) The modelled NOy columns sampled at 12:00 UTC after a 10-day model run in 2021 using the regression models trained on

2019 compared with full-chemistry. (b) The mean absolute percentage error for the 10-day runs.

based on the scaling-based and regression-based methods applied to the 2019 model run. However, the reconstruction error
tends to be consistently larger when we apply our regression-based method to the year 2021. This is particularly notable in
January and July, which can be attributed to the greatest deterioration in NOy chemistry regression performance in July 2021,
and the greatest deterioration in the NO» prediction performance in January 2021 (see Fig 4).

When we compare the difference between GEOS-Chem and TROPOMI NOy columns, we find that the NO5 reconstruction
errors are much smaller and much smaller than the estimated precision values for the data. This is the case for the scaling-
based approach and the regression-based approach applied to both 2019 and 2021. This provides confidence that our model
reconstruction performance is robust enough for use in inversion work, even in the case of using regression models that
have been trained on unseen meteorological periods. See Appendix B for a more detailed analysis on the difference between
modelled column NO5 and observed TROPOMI data.

Fig. 8b, shows that the median NO, column model reconstruction errors are 2.8% of the actual deviation from TROPOMI
in the scaling-based approach, compared to 6.5% and 7.3% in the regression-based approach for 2019 and 2021, respectively.
Similarly, these construction errors represent a median value of 1.3% of the TROPOMI precision value for the scaling-based
approach, compared to 2.9% and 3.2% for the regression-based approach for 2019 and 2021, respectively. Across all recon-
structed data points, we found that over 99.9% of the data had reconstruction errors smaller than the corresponding TROPOMI
column precision for both reconstruction methods in 2019. For the regression-based method applied in 2021, this was true for
over 99.7% of the data.
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Figure 8. (a) The absolute difference in NO3 between GEOS-Chem full-chemistry and the constant lifetime scaling based model (blue); the
regression-based chemistry model applied to a 2019 perturbed run (green) and applied to a 2021 run (purple); deviation from the observed
NO2 TROPOMI columns (red); as well as the TROPOMI NO- tropospheric column precision values (yellow). (b) The normalised NO2
differences are calculated by normalising the reconstructed model deviation by the absolute deviation between GEOSChem and TROPOMI,
as well as by the TROPOMI column precision values. For the different model reconstructions, the NO2 deviation is consistently less than the

corresponding TROPOMI precision value in more than 99.5% datapoints.
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4 Concluding remarks

We have demonstrated that the NOy chemistry rates and NO2:NO ratio described by a leading 3-D atmospheric chemistry
model can be reproduced using random forest-based regression models using NOy concentrations, the spatial location, and
meteorological variables as input parameters. The models perform successfully on perturbed testing data through all months of
2019 with R? > 0.95 for predicting NO, chemistry rates and R2 > 0.99 for predicting the corresponding NO5:NO concentra-
tion ratios. We also show that these models maintain their prediction capability when tested on model outputs from an unseen
year (2021) with contrasting environment conditions.

We have also demonstrated that the atmospheric lifetime of NOy is stable against varying emissions, particularly in winter
months. From this, we have demonstrated that it is also possible to predict updated NO, chemistry rates of change as a result of
emission perturbations, with knowledge of NO, chemistry from an initial unperturbed model run. This scaling-based approach
has impressive prediction performance with R%2=1.0.

We have developed two viable methodologies to model atmospheric NOy in a more computationally efficient way than using
the GEOS-Chem 3-D model. The regression-based chemistry method has the advantage of not requiring prior knowledge of
the NOy lifetimes for a baseline model run, and reduces the computational time by a factor of 3.25. The lifetime scaling-based
approach reduces the model run time slightly further by a factor of 4.3, but a baseline full-chemistry model run is required.
This scaling-based approach has smaller model reconstruction errors, but generally both approaches have reconstruction errors
smaller than the TROPOMI precision values for over 99.9% of the reconstructed data (399,502 points).

Our study provides confidence in random forest models being used to describe NO, chemistry to a sufficient accuracy for
them to play an important role in inversion methods. Previous work has already found that NO, can be used to help constrain
ffCO4 (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020), and this work develops a new
methodology to more efficiently infer NOy column enhancements from changes to NO,, emission inputs. The methodologies
developed here will be used within a joint NO4:CO2 model inversion to constrain geographically resolved ffCO5. This will
be explored using an ensemble Kalman filter within the GEOS-Chem model framework, as well as within the Integrated
Forecasting System (IFS) using an incremental 4D-Var algorithm (Inness et al., 2013). Results from our study are particularly
timely with the launch in the next few years of the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation
(CO2M) that include column measurements of CO5 and NOs. Overall this work will support the development and employment

of European CO5 measurement, reporting and verification systems.

5 Code/Data availability

The analysis code, model output data, and random forest regression models (in .pkl format) are available upon request from

the corresponding author (cschooli@ed.ac.uk).
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Figure Al. Diurnal cycle of NOx chemistry for four months of the year. Median and interquartile range net rates of change at the surface of

the atmosphere averaged across the European domain.
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Figure A2. Impact of hyperparameter changes on random forest regression model performance for predicting NOx chemistry rates. Plots

show the effect of varying the number of trees, maximum tree depth, maximum leaf nodes, and maximum features per decision on mean R?,

MAE, and prediction time (shaded regions represent performance ranges across monthly models). Increased algorithm complexity improves

R? and reduces MAE but increases prediction time. Optimal hyperparameters—40 trees, depth of 30, 300,000 leaf nodes, and 4 features per

decision—achieve balanced performance with a prediction time of 6 ms.
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Figure A3. Individual relationships between the nine regression input parameters and the NOy net rate of change. A LOWESS fit (red
line) illustrates smoothed trends in the data, with R? values reported for each fit. Among the parameters, NOx concentration, altitude, and

temperature exhibit noticeable trends with chemistry rates, while the remaining parameters show little to no clear trends individually.
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Figure A4. The spatial distribution of the impact of £20% emission perturbations on (a) the NOx net rate of change, and (b) the atmospheric
lifetime of NOx. Overall, it is clear that the impact on the atmospheric lifetime is much smaller, due to its independence from the NOy species

concentration. Note that a negative lifetime of NOy arises in areas where we have a net chemical production of NOx.
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Figure AS. Testing the regression models on 2021. (a) The random forest regression model for predicting the NOx chemistry rate, (b) The

reconstruction of NO> from NOy using the random forest regression model for predicting the NO2:NO ratio.
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Appendix B: Comparison with TROPOMI

The NO2 columns modelled by GEOS-Chem was compared directly with the TROPOMI data for assessment of agreement.
Scatter plots between the two are shown in Fig. B1, where we found significant Pearson correlations (p<0.001) in all months.
In January we observe a general positive bias, where the model is overestimating NOo, while in July and October, a negative
bias is seen.

The spatial distribution of the deviation between GEOS-Chem and TROPOMI is shown in Fig. B2. While there are clear
areas of difference, it is notable that the general regions where we observe elevated levels of NO, are in alignment. In general,
the spatial distribution of high-emission regions throughout Europe is fairly well understood. However, there is likely some
error on the magnitudes of the emissions in the inventories used. This is likely to explain the majority of the areas of large
bias between the model and the observations. However, it must be noted that other sources of error are present, which include
model errors in transport processes, potential inaccuracies in the model meteorology used, errors in parameterising deposition
processes, and the limiting factor of the model spatial resolution. Furthermore, there is also error on the TROPOMI measure-
ments (largely characterised by the TROPOMI column precision value) including from instrument noise, cloud and aerosol
interference, and vertical profile and sensitivity assumptions. Looking to Fig. 8 it is clear that there are many regions where the
error between the model and observations is significantly smaller than the satellite precision, and for such areas the contribution
of NOy emissions is likely to be accurate.

On the whole, it is promising to the performance of the model that there is a general correlation of agreement between the
model and satellite data. However, there is room for improvement in model agreement, and model inversions would be one

approach to achieve this.
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Figure B1. Correlation between modelled GEOS-Chem NO2 columns and observed TROPOMI NO; for the four months of interest. The

Pearson rank and mean absolute area are shown in the legend. The best-fit line (red-dashed) can be compared to the y=x line (black).
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Figure B2. Comparison between GEOS-Chem and TROPOMI for 5 days in January, April, July, and October.
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